22 research outputs found

    Evolutionary artificial neural network based on Chemical Reaction Optimization

    Get PDF
    Evolutionary algorithms (EAs) are very popular tools to design and evolve artificial neural networks (ANNs), especially to train them. These methods have advantages over the conventional backpropagation (BP) method because of their low computational requirement when searching in a large solution space. In this paper, we employ Chemical Reaction Optimization (CRO), a newly developed global optimization method, to replace BP in training neural networks. CRO is a population-based metaheuristics mimicking the transition of molecules and their interactions in a chemical reaction. Simulation results show that CRO outperforms many EA strategies commonly used to train neural networks. © 2011 IEEE.published_or_final_versionThe 2011 IEEE Congress on Evolutionary Computation (CEC 2011), New Orleans, LA., 5-8 June 2011. In Proceedings of CEC 2011, 2011, p. 2083-209

    Real-coded chemical reaction optimization with different perturbation functions

    Get PDF
    IEEE World Congress on Computational Intelligence (WCCI 2012), Brisbane, Australia, 10-15 June 2012 hosted three conferences: the 2012 International Joint Conference on Neural Networks (IJCNN 2012), the 2012 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2012), and the 2012 IEEE Congress on Evolutionary Computation (IEEE CEC 2012)Chemical Reaction Optimization (CRO) is a powerful metaheuristic which mimics the interactions of molecules in chemical reactions to search for the global optimum. The perturbation function greatly influences the performance of CRO on solving different continuous problems. In this paper, we study four different probability distributions, namely, the Gaussian distribution, the Cauchy distribution, the exponential distribution, and a modified Rayleigh distribution, for the perturbation function of CRO. Different distributions have different impacts on the solutions. The distributions are tested by a set of wellknown benchmark functions and simulation results show that problems with different characteristics have different preference on the distribution function. Our study gives guidelines to design CRO for different types of optimization problems. © 2012 IEEE.published_or_final_versio

    An inter-molecular adaptive collision scheme for Chemical Reaction Optimization

    Get PDF
    Optimization techniques are frequently applied in science and engineering research and development. Evolutionary algorithms, as a kind of general-purpose metaheuristic, have been shown to be very effective in solving a wide range of optimization problems. A recently proposed chemical-reaction-inspired metaheuristic, Chemical Reaction Optimization (CRO), has been applied to solve many global optimization problems. However, the functionality of the inter-molecular ineffective collision operator in the canonical CRO design overlaps that of the on-wall ineffective collision operator, which can potential impair the overall performance. In this paper we propose a new inter-molecular ineffective collision operator for CRO for global optimization. To fully utilize our newly proposed operator, we also design a scheme to adapt the algorithm to optimization problems with different search space characteristics. We analyze the performance of our proposed algorithm with a number of widely used benchmark functions. The simulation results indicate that the new algorithm has superior performance over the canonical CRO. © 2014 IEEE.postprin

    Optimal V2G scheduling of electric vehicles and unit commitment using chemical reaction optimization

    Get PDF
    An electric vehicle (EV) may be used as energy storage which allows the bi-directional electricity flow between the vehicle's battery and the electric power grid. In order to flatten the load profile of the electricity system, EV scheduling has become a hot research topic in recent years. In this paper, we propose a new formulation of the joint scheduling of EV and Unit Commitment (UC), called EVUC. Our formulation considers the characteristics of EVs while optimizing the system total running cost. We employ Chemical Reaction Optimization (CRO), a general-purpose optimization algorithm to solve this problem and the simulation results on a widely used set of instances indicate that CRO can effectively optimize this problem. © 2013 IEEE.published_or_final_versio

    Sensor deployment for air pollution monitoring using public transportation system

    Get PDF
    IEEE World Congress on Computational Intelligence (WCCI 2012), Brisbane, Australia, 10-15 June 2012 hosted three conferences: the 2012 International Joint Conference on Neural Networks (IJCNN 2012), the 2012 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2012), and the 2012 IEEE Congress on Evolutionary Computation (IEEE CEC 2012)Air pollution monitoring is a very popular research topic and many monitoring systems have been developed. In this paper, we formulate the Bus Sensor Deployment Problem (BSDP) to select the bus routes on which sensors are deployed, and we use Chemical Reaction Optimization (CRO) to solve BSDP. CRO is a recently proposed metaheuristic designed to solve a wide range of optimization problems. Using the real world data, namely Hong Kong Island bus route data, we perform a series of simulations and the results show that CRO is capable of solving this optimization problem efficiently. © 2012 IEEE.published_or_final_versio

    Real-coded chemical reaction optimization

    Get PDF
    Optimization problems can generally be classified as continuous and discrete, based on the nature of the solution space. A recently developed chemical-reaction-inspired metaheuristic, called chemical reaction optimization (CRO), has been shown to perform well in many optimization problems in the discrete domain. This paper is dedicated to proposing a real-coded version of CRO, namely, RCCRO, to solve continuous optimization problems. We compare the performance of RCCRO with a large number of optimization techniques on a large set of standard continuous benchmark functions. We find that RCCRO outperforms all the others on the average. We also propose an adaptive scheme for RCCRO which can improve the performance effectively. This shows that CRO is suitable for solving problems in the continuous domain. © 2012 IEEE.published_or_final_versio

    Chemical reaction optimization for the set covering problem

    Get PDF
    The set covering problem (SCP) is one of the representative combinatorial optimization problems, having many practical applications. This paper investigates the development of an algorithm to solve SCP by employing chemical reaction optimization (CRO), a general-purpose metaheuristic. It is tested on a wide range of benchmark instances of SCP. The simulation results indicate that this algorithm gives outstanding performance compared with other heuristics and metaheuristics in solving SCP. © 2014 IEEE.postprin

    FASTGNN: A Topological Information Protected Federated Learning Approach For Traffic Speed Forecasting

    Full text link
    Federated learning has been applied to various tasks in intelligent transportation systems to protect data privacy through decentralized training schemes. The majority of the state-of-the-art models in ITS are graph neural networks (GNN)-based for spatial information learning. When applying federated learning to the ITS tasks with GNN-based models, the existing architectures can only protect the data privacy; however, ignore the one of topological information of transportation networks. In this work, we propose a novel federated learning architecture to tackle this problem. Specifically, we introduce a differential privacy-based adjacency matrix preserving approach for protecting the topological information. We also propose an adjacency matrix aggregation approach to allow local GNN-based models to access the global network for a better training effect. Furthermore, we propose a GNN-based model named Attention-based Spatial-Temporal Graph Neural Networks (ASTGNN) for traffic speed forecasting. We integrate the proposed federated learning architecture and ASTGNN as FASTGNN for traffic speed forecasting. Extensive case studies on a real-world dataset demonstrate that FASTGNN can develop accurate forecasting under the privacy preservation constraint

    A Communication-Efficient Federated Learning Scheme for IoT-Based Traffic Forecasting

    Full text link
    Federated Learning (FL) is widely adopted in traffic forecasting tasks involving large-scale IoT-enabled sensor data since its decentralization nature enables data providers’ privacy to be preserved. When employing state-of-the-art deep learning-based traffic predictors in FL systems, the existing FL frameworks confront overlarge communication overhead when transmitting these models’ parameter updates since the modelling depth and breadth renders them incorporating enormous number of parameters. In this paper, we propose a practical FL scheme, namely, Clustering-based hierarchical and Two-step-optimized FL (CTFed), to tackle this issue. The proposed scheme follows a divide et impera strategy that clusters the clients into multiple groups based on the similarity between their local models’ parameters. We integrate the particle swarm optimization algorithm and devises a two-step approach for local model optimization. This scheme enables only one but representative local model update from each cluster to be uploaded to the central server, thus reduces the communication overhead of the model updates transmission in FL. CTFed is orthogonal to the gradient compression-or sparsification-based approaches so that they can orchestrate to optimize the communication overhead. Extensive case studies on three real-world datasets and three state-of-the-art models demonstrate the outstanding training efficiency, accurate prediction performance and robustness to unstable network environments of the proposed scheme

    Improving Transportation Mode Identification with Limited GPS Trajectories

    Full text link
    corecore